首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60971篇
  免费   5271篇
  国内免费   4317篇
  2023年   712篇
  2022年   748篇
  2021年   2785篇
  2020年   1897篇
  2019年   2381篇
  2018年   2297篇
  2017年   1655篇
  2016年   2359篇
  2015年   3715篇
  2014年   4275篇
  2013年   4765篇
  2012年   5603篇
  2011年   5131篇
  2010年   3070篇
  2009年   2704篇
  2008年   3259篇
  2007年   2899篇
  2006年   2599篇
  2005年   2139篇
  2004年   1912篇
  2003年   1613篇
  2002年   1463篇
  2001年   1244篇
  2000年   1113篇
  1999年   1056篇
  1998年   586篇
  1997年   586篇
  1996年   564篇
  1995年   522篇
  1994年   508篇
  1993年   354篇
  1992年   592篇
  1991年   473篇
  1990年   393篇
  1989年   375篇
  1988年   284篇
  1987年   237篇
  1986年   203篇
  1985年   217篇
  1984年   171篇
  1983年   133篇
  1982年   108篇
  1981年   70篇
  1980年   71篇
  1979年   84篇
  1978年   69篇
  1977年   58篇
  1976年   67篇
  1975年   63篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 859 毫秒
11.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
12.
Phase-sensitive two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 in aqueous deuterium oxide solution at four mixing times were quantified to give all nonoverlapping cross-peak intensities. A structural model for [d(GGTATACC)]2 was built in which the GG- and -CC moieties were in the B-DNA form, while the middle -TATA- moiety was in the wrinkled-D form (BDB model). This model was subjected to energy refinement by molecular mechanics calculations with the program AMBER. Counterions (Na+) were added to neutralize the charges, and water molecules were placed bridging across the minor groove. A complete relaxation matrix analysis was used to calculate two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 from the above models (before and after energy refinement) and from four other [d(GGTATACC)]2 structural models: regular A, crystalline A, regular B, and energy-minimized B. Among them, the energy-minimized BDB model yielded a set of theoretical spectra that gave the best fit to the experimental spectra. It was also the energetically most stable. Therefore, it is a good representation of the ensemble- and time-averaged structure of the octamer in solution. This model has backbone torsion angles similar to those of B-form DNA in the GG- and -CC moieties and torsion angles similar to those of wrinkled D form DNA in the -TATA- moiety. The base stacking and base pairing are not interrupted at the junctions between the two structural moieties. Its minor groove is narrower than that of B DNA, and the solvent-accessible surface of the minor groove forms a closed hydration tunnel in the middle -TATA- segment.  相似文献   
13.
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) plays an important role in metabolic regulation in plant. To understand the molecular mechanism of amino acids and carbohydrate metabolism in Malus hupehensis Rehd. var. pinyiensis Jiang (Pingyi Tiancha, PYTC), a full-length cDNA clone encoding homologue of SnRK1 was isolated from PYTC by Rapid Amplification of cDNA Ends (RACE). The clone, designated as MhSnRK1, contains 2063 nucleotides with an open reading frame of 1548 nucleotides. The deduced 515 amino acids showed high identities with other plant SnRK1 genes. Quantitative real-time PCR analysis revealed this gene was expressed in roots, stems and leaves. Exposing seedlings to nitrate caused and initial decrease in expression of the MhSnRK1 gene in roots, leaves and stems in short term. Ectopic expression of MhSnRK1 in tomato mainly resulted in higher starch content in leaf and red-ripening fruit than wild-type plants. This result supports the hypothesis that overexpression of SnRK1 causes the accumulation of starch in plant cells. All the results suggest that MhSnRK1 may play important roles in carbohydrate and amino acid metabolisms.  相似文献   
14.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
15.
16.
  相似文献   
17.
18.
Conantokin-T (con-T) and conantokin-G (con-G) are two highly homologous peptide toxins found in Conus venom. The former is a 21-residue peptide with four gamma-carboxyglutamic acid (Gla) residues (at positions 3, 4, 10 and 14), while the latter is a 17-residue peptide with five gamma-carboxyglutamic acid residues (at positions 3, 4, 7, 10 and 14). Despite the apparent similarity in number and relative positions of the gamma-carboxyglutamic acid residues, (113)Cd-NMR studies indicated a distinct metal binding behavior for con-G and con-T. There appears to be four binding sites in con-G in contrast to one metal binding site in con-T. To elucidate the mode of calcium binding by the gamma-carboxyglutamic acid residues in these conantokins, we designed various analogous peptides with their gamma-carboxyglutamic acid replaced by other amino acid residues. (113)Cd-NMR experiments on conantokin analogues reveal that the major difference in the number of metal binding sites between con-G and con-T is due to the residue at position 7. We also performed molecular simulations to calculate the relative binding free energies of several potential binding sites. Based on our theoretical and experimental results, we propose a 'four-site' binding model for conantokin-G and a 'single-site' binding model for conantokin-T.  相似文献   
19.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
20.
Increasing evidence indicates an increased risk of tuberculosis (TB) for rheumatoid arthritis (RA) patients receiving biologic therapy, and the effectiveness of isoniazid prophylaxis (INHP) in TB prevention. We aimed to examine 1) the incidence rate (IR) and risk factors for TB among RA patients receiving different therapies; 2) INHP effectiveness for TB prevention; 3) mortality rates after TB diagnosis in patients receiving different therapies. This retrospective study was conducted using a nationwide database: 168,720 non-RA subjects and a total of 42,180 RA patients including 36,162 csDMARDs-exposed, 3,577 etanercept-exposed, 1,678 adalimumab-exposed and 763 rituximab-exposed patients. TB risk was 2.7-fold higher in RA cohort compared with non-RA group, with an adjusted hazard ratio (aHR) of 2.58. Advanced age, male, the use of corticosteroids≧5mg/day, and the presence of diabetes mellitus (DM), chronic obstructive pulmonary disease and chronic kidney disease were risk factors for developing TB. Using csDMARDs-exposed group as reference, aHR of TB was the highest with adalimumab treatment (1.52), followed by etanercept (1.16), and the lowest with rituximab (0.08). INHP could effectively reduce TB risk in biologics-exposed patients. Mortality rates after TB diagnosis were higher in RA patients, particularly the elderly and those with DM, with lower rates in adalimumab-exposed patients compared with csDMARDs-exposed patients. In conclusion, TB risk was increased in patients receiving TNF-α inhibitors, but the risk associated with rituximab therapy was relatively low. With the effectiveness of INHP shown in the prevention of biologics-associated TB, stricter implementation of INHP should be beneficial. The mortality from biologics–associated TB may be efficiently reduced through increased awareness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号